References

1. a. b. c. File: SSME Schematic.svg. (2020, October 5). Wikimedia Commons, the free media repository. Modified 19:30, March 6, 2021 from https://commons.wikimedia.org/w/index.php?title=File:Ssme_schematic_(updated).svg&oldid=481277690

2. a. b. c. d. e. f. g. “Space Shuttle Main Engine Orientation, Space Transportation Training System Data,” Boeing Rept. BC-98-04, Canoga Park, CA, 1998 http://www.lpre.de/p_and_w/SSME/SSME_PRESENTATION.pdf.

3. a. b. c. Çengel Yunus A. and John M. Cimbala. Fluid Mechanics: Fundamentals and Applications. McGraw-Hill Higher Education, Boston, 2006

4. a. b. c. d. e. Çengel, Yunus A., and Michael A. Boles. Thermodynamics: An Engineering Approach. 6th ed, McGraw-Hill Higher Education, 2008. Pages 137, 119, 379.

5. a. b. c. d. e." Banuti, Daniel, et al. “Seven Questions about Supercritical Fluids - Towards a New Fluid State Diagram.” 55th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, 2017. DOI.org (Crossref), doi:10.2514/6.2017-1106.

6. a. File: Phase-diag.svg. (2008, January 28). Wikimedia Commons, the free media repository. Modified 11:13, March 21, 2021 from https://commons.wikimedia.org/wiki/File:Phase-diag.svg

7. a. “Hydrogen - Thermophysical Properties.” https://www.engineeringtoolbox.com/hydrogen-d_1419.html#phases. Accessed 21 Mar. 2021.

8. a. b. “Thermophysical Properties of Hydrogen.” NIST Chemistry Webook. https://webbook.nist.gov/cgi/fluid.cgi?ID=C1333740&Action=Page. Accessed 21 Mar. 2021.

9. a. Younglove, B. A., Thermophysical properties of Fluids. I. Argon, Ethylene, Parahydrogen, Nitrogen, Nitrogen Triuoride, and Oxygen," Journal of Physical and Chemical Reference Data, Vol. 11, 1982, pp. Supplement 1.

10. a. “What Are Free Energies?” Chemistry LibreTexts, 23 Jan. 2018, https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Thermodynamics/Energies_and_Potentials/Free_Energy/What_are_Free_Energies. Accessed 21 Mar. 2021.

11. a. b. c. d. e. f. Leachman, J. W., et al. “Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen.” Journal of Physical and Chemical Reference Data, Vol. 38, No. 3, Sept. 2009, pp. 721–48. DOI.org (Crossref), doi:10.1063/1.3160306.

12. a. b. c. Schmidt, R., and W. Wagner. “A New Form of the Equation of State for Pure Substances and Its Application to Oxygen.” Fluid Phase Equilibria, Vol. 19, No. 3, Dec. 1985, pp. 175–200. DOI.org (Crossref), doi:10.1016/0378-3812(85)87016-3.

13. a. Bell, Ian H., and Andreas Jäger. “Helmholtz Energy Transformations of Common Cubic Equations of State for Use with Pure Fluids and Mixtures.” Journal of Research of the National Institute of Standards and Technology, vol. 121, June 2016, p. 238. DOI.org (Crossref), doi:10.6028/jres.121.011.

14. a. McCarty, R. D., et al. Selected Properties of Hydrogen (Engineering Design Data). U.S. Department of Commerce, 1981.

15. a. b. c. d. Chapra, Steven C., and Raymond P. Canale. Numerical Methods for Engineers. Seventh edition, McGraw-Hill Education, 2015.

16. a. b. c. McBride, Bonnie, et al. Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species. NASA Technical Memorandum 4513, 1993, p. 1-89

17. a. b. c. d. e. f. g. h. Anderson, John D. Hypersonic and High-Temperature Gas Dynamics. 2nd ed, American Institute of Aeronautics and Astronautics, 2006.

18. a. File: Translational Motion.gif. (1995, August 14). Wikimedia Commons, the free media repository. Modified 18:50, May 1, 2021 from https://commons.wikimedia.org/wiki/File:Translational_motion.gif

19. a. File: Euler2a.gif. (2013 January 30). Wikimedia Commons, the free media repository. Modified 08:20, May 2, 2021 from https://commons.wikimedia.org/wiki/File:Euler2a.gif

20. a. File: Linear-3D-balls.png. (2006 December 12). Wikimedia Commons, the free media repository. Modified 08:20, May 2, 2021 from https://en.wikipedia.org/wiki/Molecular_geometry#/media/File:Linear-3D-balls.png

21. a. File: Bent-3D-balls.png. (2006 December 12). Wikimedia Commons, the free media repository. Modified 08:20, May 2, 2021 from https://en.wikipedia.org/wiki/Molecular_geometry#/media/File:Bent-3D-balls.png

22. a. File: Symmetrical_stretching.gif. (2006 December 12). Wikimedia Commons, the free media repository. Modified 08:20, May 2, 2021 from https://en.wikipedia.org/wiki/Molecular_vibration#/media/File:Symmetrical_stretching.gif

23. a. Johnson, R.D. Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database 101. National Institute of Standards and Technology, 2020. DOI.org (Datacite), doi:10.18434/T47C7Z.

24. a. File: Energy_levels.svg. (2006 December 12). Wikimedia Commons, the free media repository. Modified 08:20, May 2, 2021 from https://upload.wikimedia.org/wikipedia/commons/thumb/a/a8/Energy_levels.svg/612px-Energy_levels.svg.png

25. a. Wayne, R. P. “Singlet Molecular Oxygen.” Advances in Photochemistry, edited by J. N. Pitts et al., John Wiley & Sons, Inc., 2007, pp. 311–71. DOI.org (Crossref), doi:10.1002/9780470133378.ch4.

26. a. T.E. Horton. Computation of Partition Functions and Thermochemistry Data for Atomic, Ionic, Diatomic, and Polyatomic Species. NASA Technical Report 32-1425. https://ntrs.nasa.gov/api/citations/19700011342/downloads/19700011342.pdf.

27. a. Moore, Charlotte. Atomic Energy Levels as Derived from the Analyses of Optical Spectra. United States Department of Commerce National Bureau of Standards, 1971.

28. a. b. c. Zucker, Robert D., and Oscar Biblarz. Fundamentals of Gas Dynamics. 2nd ed, J. Wiley, 2002.

29. a. “Thermophysical Properties of Oxygen.” NIST Chemistry Webook. https://webbook.nist.gov/cgi/fluid.cgi?ID=C7782447&Action=Page. Accessed 02 May 2021.

30. a. “JANAF Thermochemical Tables.” https://janaf.nist.gov/tables/O-029.html. Accessed 02 May 2021.

31. a. L.A. Weber. Thermodynamic and Related Properties of Oxygen from the Triple Point to 300 K at Pressures to 1000 Bar. NASA Reference Publication 1011. https://ntrs.nasa.gov/api/citations/19780008176/downloads/19780008176.pdf

32. a. Roder, H. M. “The Thermal Conductivity of Oxygen.” Journal of Research of the National Bureau of Standards, vol. 87, no. 4, July 1982, p. 279. DOI.org (Crossref), doi:10.6028/jres.087.019.

33. a. b. Assael, M. J., et al. “Correlation of the Thermal Conductivity of Normal and Parahydrogen from the Triple Point to 1000 K and up to 100 MPa.” Journal of Physical and Chemical Reference Data, vol. 40, no. 3, Sept. 2011, p. 033101. DOI.org (Crossref), doi:10.1063/1.3606499.

34. a. Lemmon, Eric W., and Richard T. Jacobsen. “A New Functional Form and New Fitting Techniques for Equations of State with Application to Pentafluoroethane (HFC-125).” Journal of Physical and Chemical Reference Data, vol. 34, no. 1, Mar. 2005, pp. 69–108. DOI.org (Crossref), doi:10.1063/1.1797813.

35. a. Diller, Dwain E. “Measurements of the Viscosity of Parahydrogen.” The Journal of Chemical Physics, vol. 42, no. 6, Mar. 1965, pp. 2089–100. DOI.org (Crossref), doi:10.1063/1.1696250.

36. a. Gordon, Sanford and McBride, Bonnie. “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications.” NASA Reference Publication 1311.

37. a. b. Sozen, Mehmet. A Computational Method for Determining the Equilibrium Composition and Product Temperature in a LH2/LOX Combustor. 2002 NASA Faculty Fellowship Program Research Reports, 1 Apr. 2003, https://ntrs.nasa.gov/citations/20030093627.

38. a. b. c. d. e. f. g. h. i. j. k. Huzel, Dieter K., and David H. Huang. Modern Engineering for Design of Liquid Propellant Rocket Engines. American Institute of Aeronautics and Astronautics, 1992.

39. a. b. Sozen, Mehmet. Modeling of LH2/LOX Combustion for Liquid Rocket Propulsion Engines-Enhancement of Generalized Fluid System Simulation Program. 2003 NASA Faculty Fellowship Program Research Reports, 1 May 2004, https://ntrs.nasa.gov/citations/20040171464

40. a. b. Hill, Philip G., and Carl R. Peterson. Mechanics and Thermodynamics of Propulsion. 2nd ed, Addison-Wesley, 1992.

41. a. “The Equilibrium Constant K.” Khan Academy, https://www.khanacademy.org/science/ap-chemistry/chemical-equilibrium-ap/equilibrium-constant-ap/a/the-equilibrium-constant-k. Accessed 14 June 2021

42. a. “Van’t Hoff Equation.” Wikipedia, 19 May 2021. Wikipedia, https://en.wikipedia.org/w/index.php?title=Van_%27t_Hoff_equation&oldid=1024051489.

43. a. “Chemical Equilibrium with Applications.” Glenn Research Center | NASA, https://www1.grc.nasa.gov/research-and-engineering/ceaweb/. Accessed 15 June 2021.

44. a. b. Brügge, Norbert. “Space Shuttle Propulsion.” Spacerockets: Database & Analytics, http://www.b14643.de/Spacerockets_2/United_States_1/Space_Shuttle/Propulsion/engines.htm. Accessed 15 June 2021.

45. a. Halliday, David, et al. Fundamentals of Physics. 7th ed., Extended ed, Wiley, 2005.

46. a. b. Martinez-Sanchez, Manuel, and Paulo Lozano. “Space Propulsion: Fundamentals and Definitions.” MIT Open Courseware, Massachusetts Institute of Technology, 2015, https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-522-space-propulsion-spring-2015/lecture-notes/MIT16_522S15_Lecture2.pdf.

47. a. Weisstein, Eric W. Gaussian Elimination. https://mathworld.wolfram.com/GaussianElimination.html. Accessed 11 July 2021.

48. a. Petrasek, Donald W., and Joseph R. Stephens. Fiber Reinforced Superalloys for Rocket Engines. 1988. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/19890006619.

49. a. Abdul-Aziz, A., and A. Kaufman. “Nonlinear Heat Transfer and Structural Analyses of SSME Turbine Blades.” Structural Integrity and Durability of Reusable Space Propulsion Systems, Jan. 1987. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/19870013346.

50. a. “Superalloys for High Temperatures—a Primer.” Superalloys, by Matthew J. Donachie and Stephen J. Donachie, ASM International, 2002, pp. 1–9. DOI.org (Crossref), doi:10.31399/asm.tb.stg2.t61280001.

51. a. b. Lewis, J. R. “Design Overview of Fiber-Reinforced Superalloy Composites for the Space Shuttle Main Engine.” NASA. Marshall Space Flight Center Advan. High Pressure O2/H2 Technol., Apr. 1985. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/19850018560.

52. a. b. c. d. Nickerson, G. R., and L. D. Dang. Performance Predictions for an SSME Configuration with an Enlarged Throat. Nov. 1985. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/19860012108

53. a. Smith, Mark. Newton-Raphson Technique. Massachusetts Institute of Technology, 1 Oct. 1998, https://web.mit.edu/10.001/Web/Course_Notes/NLAE/node6.html.

54. a. Humble, Ronald W. Space Propulsion Analysis and Design. 1. ed., Rev, McGraw-Hill, 1995.

55. a. Huang, D. H., and D. K. Huzel. Design of Liquid Propellant Rocket Engines Second Edition. Jan. 1971. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/19710019929.

56. a. b. Van Hooser, Katherine P., and Douglas P. Bradley. Space Shuttle Main Engine - The Relentless Pursuit of Improvement. 2011. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/20120001539.

57. a. Przekwas, A. J., et al. SSME Thrust Chamber Simulation Using Navier-Stokes Equations. Oct. 1984. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/19850010707.

58. a. b. c. d. e. “Liquid Rocket Engine Nozzles.” NASA Space Vehicle Design Criteria (Chemical Propulsion), July 1976. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/19770009165.

59. a. “Technical Notes.” ARS Journal, Vol. 30, No. 6, June 1960, pp. 557–76. DOI.org (Crossref), https://doi.org/10.2514/8.5151.

60. a. Rao, G. V. R. “Exhaust Nozzle Contour for Optimum Thrust.” Journal of Jet Propulsion, vol. 28, no. 6, June 1958, pp. 377–82. DOI.org (Crossref), https://doi.org/10.2514/8.7324.

61. a. Newlands, Rick. “The Thrust Optimised Parabolic Nozzle.” Aspirespace Rocket Engineering Society, 18 Apr. 2017, http://www.aspirespace.org.uk/downloads/Thrust%20optimised%20parabolic%20nozzle.pdf.

62. a. Hicks, Bruce L., et al. “On the One‐Dimensional Theory of Steady Compressible Fluid Flow in Ducts with Friction and Heat Addition.” Journal of Applied Physics, vol. 18, no. 10, Oct. 1947, pp. 891–902. DOI.org (Crossref), https://doi.org/10.1063/1.1697563.

63. a. Jiji, Latif M. Heat Convection. 2. ed, Springer, 2009.

64. a. Original diagram: S Beck and R Collins, University of Sheffield. Conversion to SVG: Marc.derumaux, CC BY-SA 4.0, via Wikimedia Commons. https://commons.wikimedia.org/w/index.php?curid=52681200

65. a. Naraghi, Mohammad H., and Matthieu Foulon. “A Simple Approach for Thermal Analysis of Regenerative Cooling of Rocket Engines.” Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C, ASMEDC, 2008, pp. 531–38. DOI.org (Crossref), https://doi.org/10.1115/IMECE2008-67988.

66. a. Benson, Tom. Beginner’s Guide to Rockets - Mach Number. NASA, 13 May 2021, https://www.grc.nasa.gov/www/k-12/rocket/Lessons/machC_ans.html.

67. a. b. c. d. Halchak, John, et al. Materials for Liquid Propulsion Systems. NASA Marshall Space Flight Center and Aerojet Rocketdyne, Inc, 2018, https://ntrs.nasa.gov/citations/20160008869.

68. a. b. SSME Physical and Functional Descriptions. Space Transportation System HAER No. TX-116, NASA, https://www.nasa.gov/sites/default/files/files/3PFD.pdf.

69. a. b. c. d. e. Betti, Barbara, et al. “Coupled Heat Transfer Analysis in Regeneratively Cooled Thrust Chambers.” Journal of Propulsion and Power, vol. 30, no. 2, Mar. 2014, pp. 360–67. DOI.org (Crossref), https://doi.org/10.2514/1.B34855.

70. a. Bartz, D. R. “Turbulent Boundary-Layer Heat Transfer from Rapidly Accelerating Flow of Rocket Combustion Gases and of Heated Air.” Advances in Heat Transfer, vol. 2, Elsevier, 1965, pp. 1–108. DOI.org (Crossref), https://doi.org/10.1016/S0065-2717(08)70261-2.

71. a. “Nusselt Number.” Wikipedia, 24 May 2021. Wikipedia, https://en.wikipedia.org/w/index.php?title=Nusselt_number&oldid=1024849680.

72. a. b. c. Wang, Ten-See, and Van Luong. “Hot-Gas-Side and Coolant-Side Heat Transfer in Liquid Rocket Engine Combustors.” Journal of Thermophysics and Heat Transfer, vol. 8, no. 3, July 1994, pp. 524–30. DOI.org (Crossref), https://doi.org/10.2514/3.574.

73. a. b. c. Naraghi, Mohammad H., and Matthieu Foulon. “A Simple Approach for Thermal Analysis of Regenerative Cooling of Rocket Engines.” Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C, ASMEDC, 2008, pp. 531–38. DOI.org (Crossref), https://doi.org/10.1115/IMECE2008-67988.

74. a. Niino, M., et al. “Heat Transfer Characteristics of Liquid Hydrogen as a Coolant for the LO2/LH2 Rocket Thrust Chamber with the Channel Wall Construction.” 18th Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, 1982. DOI.org (Crossref), https://doi.org/10.2514/6.1982-1107.

75. a. b. c. d. Incropera, Frank, et al. Introduction to Heat Transfer. 6th ed, Wiley, 2011.

76. a. Naraghi, Mohammad, et al. “A Model for Design and Analysis of Regeneratively Cooled Rocket Engines.” 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, 2004. DOI.org (Crossref), https://doi.org/10.2514/6.2004-3852.

77. a. Pizzarelli, Marco, et al. “Coupled Wall Heat Conduction and Coolant Flow Analysis for Liquid Rocket Engines.” Journal of Propulsion and Power, vol. 29, no. 1, Jan. 2013, pp. 34–41. arc.aiaa.org (Atypon), https://doi.org/10.2514/1.B34533.

78. a. NASA on The Commons. Shuttle Main Engine Firing in Gimbal Test. 1 Jan. 1995. Flickr, https://www.flickr.com/photos/nasacommons/16315975038/.

79. a. Foley, Michael J. Space Shuttle Main Engine Structural Analysis and Data Reduction/Evaluation. Volume 6: Primary Nozzle Diffuser Analysis. Apr. 1989. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/19890015066.

80. a. Space Shuttle Main Engine | National Air and Space Museum. https://airandspace.si.edu/collection-media/NASM-SI-2006-405. Accessed 2 Oct. 2021.

81. a. b. c. d. Liquid Rocket Engine Fluid-Cooled Combustion Chambers. Apr. 1972. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/19730022965.

82. a. Niino, M., et al. “Heat Transfer Characteristics of Liquid Hydrogen as a Coolant for the LO2/LH2 Rocket Thrust Chamber with the Channel Wall Construction.” 18th Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, 1982. arc.aiaa.org (Atypon), https://doi.org/10.2514/6.1982-1107

83. a. b. A286 Technical Data Sheet, Allegheny Technologies Incorporated, 17 Apr. 2012, https://www.atimetals.com/Products/Documents/datasheets/nickel-cobalt/nickel-based/ati_286_ludlum_version_tds_en_v1.pdf.

84. a. Thompson, James R., “Space Shuttle Main Engine” (1980). The Space Congress® Proceedings. https://commons.erau.edu/space-congress-proceedings/proceedings-1980-17th/session-1/5

85. a. CEARUN Rev3a. https://cearun.grc.nasa.gov/. Accessed 10 Oct. 2021.

86. a. Review of Idealized Nozzle Theory. Utah State University, http://mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section5/section5.1.pdf. Accessed 11 Oct. 2021.

87. Naraghi, Mohammad H. N. “RTE: A Computer Code for Rocket Thermal Evaluation.” NASA. Lewis Research Center, The Sixth Annual Thermal and Fluids Analysis Workshop, Jan. 1995. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/19950020934

88. Nickerson, G. R., et al. Engineering and Programming Manual: Two-Dimensional Kinetic Reference Computer Program (TDK). Apr. 1985. ntrs.nasa.gov, https://ntrs.nasa.gov/citations/19860007470.

89. Jurvetson, Steve. Space Shuttle Main Engine SSME. 30 Oct. 2012. Flickr, https://www.flickr.com/photos/jurvetson/8159769501/.